KISSA-1D Electrochemistry Simulation Software

Cyclic voltammetry can readily provide qualitative information about the stability of the oxidation states and the electron transfer kinetics of a redox system. However, quantitative studies using cyclic voltammetry (e.g., mechanistic investigations) are more difficult and typically require the use of simulation software. Several methods have been developed for the simulation of cyclic voltammograms. Of these methods, the fast implicit finite difference method has been shown to be the most efficient, stable, and accurate, and this method is used for the KISSA-1D© simulation software from BASi®.

Bioanalytical Systems, Inc. is a licensed distributor of KISSA-1D©. KISSA-1D© is copyright of Oleksiy Klymenko, Irina Svir, and Christian Amatore.


KISSA-1D© is designed for automatic simulation of electrochemical reaction mechanisms of any complexity involving any number of reactants and elementary (electro)chemical steps. This powerful program is easy to use and gives accurate results. The software protection allows multiple users (but not simultaneous) making it convenient for research and teaching laboratories.

Species concentration vs distance from the electrode plot for EE mechanism

Mechanism dialog box showing EE mechanism

Reaction parameters dialog box for EE mechanism

Potentials dialog box

Ordering information

 EF-1669                   KISSA-1D© Simulation Software with USB Dongle (please contact BASi for software pricing)

KISSA-1D© uses a USB dongle for Software protection. Licensee may install the Software on one or more computer(s) in the Licensee’s organization and designate one or more persons in the Licensee’s organization (“Named Users”) the right to use the Software. The Software will function only on the computer to which the USB protection dongle is attached.

A signed licensing agreement must be received before purchase is completed.

Installation instructions

IMPORTANT INSTALLATION NOTICE: Be sure that the dongle is NOT plugged into the computer during the installation of the software.

Our software requires that the dongle driver be installed before it will be able to locate the dongle. The dongle driver is included in the KISSA-1D© installation package and will be run automatically within the main program installation.

Installation instructions

  1. Download and install the KISSA-1D© software (version 1.2.2b)
  2. Run SETUP.EXE and follow the on-screen instructions (including the Sentinel Driver installation). The Install Shield Wizard will guide you through the installation.
  3. Once the KISSA-1D© Windows program is installed, the Install Wizard will automatically start the installation of the dongle driver.
  4. Once the dongle driver has been installed, the PC must be restarted in order for the changes to take effect.
  5. Plug the dongle into your computer's USB port.
  6. Run KISSA-1D©.

Computational Results Available

  • electrochemical currents (CV, LSV, chronoamperometry, double potential step, etc.)
  • concentration distributions of all species
  • surface coverage of adsorbed species
  • intensity of electrochemiluminescence (ECL) emission
  • electrode geometries: planar, (hemi)sphere, and (hemi)cylinder

Physicochemical Models Solved

  • heterogeneous electron transfer (ET) steps
  • homogeneous chemical reactions of any order
  • kinetically controlled adsorption-desorption (Langmuir isotherm)
  • ET and reactions between species in the adsorbed state
  • reactions between adsorbed and solution species
  • reactions leading to electrochemiluminescence (ECL)
  • natural convection limiting the extent of the diffusion layer
  • system pre‐equilibration that takes into account finite duration of the pre‐equilibration period and finite reaction rates; this yields realistic and consistent initial conditions at the beginning of the voltammetric scan unlike thermodynamic pre‐equilibration throughout the solution volume as implemented in some other programs.

Program Interface

  • convenient entry of a reaction mechanism and parameters
  • graphical output of computed currents, concentration distributions, surface coverages and ECL intensity
  • export of simulation results into a file
  • import of experimental electrochemical currents for comparison with simulation
  • printing of all graphics

The Computational Strategy

  • a novel algorithm for automatic adaptation of the computational grid using a kinetic criterion for cases of fast homogeneous kinetics (and possibly travelling reaction fronts)
  • use of conformal or quasi‐conformal coordinate transforms for adequate tracking of diffusional propagation and resolution of edge effects at microelectrodes

Computer Requirements

  • Operating system of Windows XP, Vista, 7, 8, or 10 is required
  • USB port

KISSA-1D© Tutorials

KISSA-1D© Bibliography

Simulation strategy

  1. Amatore, C.; Klymenko, O.; Svir, I. A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution: Principle. Electrochem. Commun. 12, 2010, 1170-1173.
  2. Klymenko, O.V.; Oleinick, A.; Svir, I.; Amatore, C. A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution under spherical or cylindrical diffusion. Russian J Electrochem. 48, 2012, 593-599.
  3. Klymenko, O.V.; Svir, I.; Oleinick, A.; Amatore, C. A novel approach to the simulation of electrochemical mechanisms involving acute reaction fronts at disk and band microelectrodes. ChemPhysChem 13, 2012, 845-859.
  4. Amatore, C.; Klymenko, O.V.; Svir, I. Importance of correct prediction of initial concentrations in voltammetric scans: Contrasting roles of thermodynamics, kinetics, and natural convection. Anal. Chem. 84, 2012, 2792-2798.
  5. Klymenko, O.V.; Svir, I.; Amatore, C. New theoretical insights into the competitive roles of electron transfers involving adsorbed and homogeneous phases. J Electroanal. Chem. 688, 2013, 320-327.
  6. Klymenko, O.V.; Svir, I.; Amatore, C. Molecular electrochemistry and electrocatalysis: a dynamic view. Molecular Physics 112, 2014, 1273-1283.


  1. Amatore, C.; Klymenko, O.; Svir, I. A new strategy for simulation of electrochemical mechanisms involving acute reaction fronts in solution: Application to model mechanisms.  Electrochem. Commun. 12, 2010, 1165-1169.
  2. Klymenko, O.; Amatore, C.; Svir, I. Theoretical study of the EE reaction mechanism with comproportionation and different diffusivities of reactants.  Electrochem. Commun. 12, 2010, 1378-1382.
  3. Lorcy, D.; Guerro, M.; Bergamini, J.-F.; Hapiot, P. Vinylogous tetrathiafulvalene based podands: Complexation interferences on the molecular movements triggered by electron transfer. J. Phys. Chem. B 117, 2013, 5188-5194.
  4. Klymenko, O.V.; Buriez, O.; Labbe, E.; Zhan,D.-P.; Rondinini, S.; Tian, Z.-Q.; Svir, I.; Amatore, C. Uncovering a missing link between molecular electrochemistry and electrocatalysis: mechanism of benzyl chloride reduction at silver cathodes. ChemElectroChem 1, 2014, 227-240.
  5. Gutierrez, A.G.P.; Zeitouny, J.; Gomila, A.; Douziech, B.; Cosquer, N.; Conan, F.; Reinaud, O.; Hapiot, P.; Le Mest, Y.; Lagrost, C.; Le Poul, N. Insights into water coordination associated with the CuII/CuI electron transfer at a biomimetic Cu centre. Dalton Transactions 43, 2014, 6436-6445.
  6. Jalkh, J.; Leroux, Y. R.; Lagrost, C.; Hapiot, P. Comparative electrochemical investigations in ionic liquids and molecular solvents of a carbon surface modified by a redox monolayer. J. Phys. Chem. C 118/49, 2014, 28640-28646.
  7. He, W. Y.; Fontmorin, J.-M.; Hapiot, P.; Soutrel, I.; Floner, D.; Fourcade, F.; Amrane, A.; Geneste, F. A new bipyridyl cobalt complex for reductive dechlorination of pesticides. Electrochimica Acta 207, 2016, 313-320.
  8. Dickinson, E.J.F.; Ekström, H.; Fontes, E. COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review. Electrochem. Commun. 40, 2014, 71-74.
  9. Speiser, B. Organic Electrochemistry, 5-th Ed., Chap. 5. “Application of Digital Simulation”, 2015, 205–227.
  10. Saveant, J.M. Molecular Electrochemistry: Recent Trends and Upcoming Challenges. ChemElectroChem 3, 2016, 1967-1977.
  11. Chen, R.; Balla, R.J.; Li, Z.; Liu, H.; Amemiya, S. Origin of Asymmetry of Paired Nanogap Voltammograms Based on Scanning Electrochemical Microscopy: Contamination Not Adsorption. Anal. Chem. 88, 2016, 8323–8331.
  12. Mulas, A., He, X., Hervault, Y.-M., Norel, L., Rigaut, S., Lagrost, C.
    Dual-Responsive Molecular Switches Based on Dithienylethene–RuII Organometallics in Self-Assembled Monolayers Operating at Low Voltage. Chemistry – A European Journal, 23, 2017, 10205-10214.
  13. Bkhach, S.; Aleveque, O.; Blanchard, P.; Gautier, C.; Levillain, E. Thienylene vinylene dimerization: from solution to self-assembled monolayer on gold. Nanoscale 10, 2018, 1613-1616.
  14. Costentin, C.; Saveant, J.-M. Homogeneous Catalysis of Electrochemical Reactions: The SteadyState and Nonsteady-State Statuses of Intermediates. ACS Catal. 8, 2018, 5286-5297.
  15. Hijazi, H.; Vacher, A.; Groni, S.; Lorcy, D.; Levillain, E.; Fave, C.; Schöllhorn, B. Electrochemically driven interfacial halogen bonding on self-assembled monolayers for anion detection. Chem. Commun. 55, 2019, 1983-1986.
  16. Lemaire, A.; Hapiot, P.; Geneste, F. FranceTi-Catalyst Biomimetic Sensor for the Detection of Nitroaromatic Pollutants. Anal. Chem. 91 (4), 2019, 2797–2804.
  17. ENCYCLOPEDIA of ANALYTICAL SCIENCE. Eds.Paul Worsfold, Colin Poole, Alan Townshend and Manuel Miro. (Edition 3) 2019. Elsevier. Voltammetry/Cyclic Voltammetry of Organic Compounds by Robert J. Forster and Loanda R. Cumba. Volume 10, pp. 197-208.
  18. Alévêque, O.; Gautier, C.; Levillain, E. Real-time absorption spectroelectrochemistry: From solution to monolayer. Cur. Opinion Electrochem., 15, 2019, 34-41.
  19. A. Mulas, G.V. Dubacheva, H. Al Sabea, F. Miomandre, J.-F. Audibert, L. Norel, S. Rigaut, C. Lagrost. Self-Assembled Monolayers of Redox-Active 4d–4f Heterobimetallic Complexes. Langmuir, 35(42), 2019, 13711-13717.
  20. N. Kurapati, P. Pathirathna, C. Ziegler, S. Amemiya. Adsorption and Electron‐Transfer Mechanisms of Ferrocene Carboxylates and Sulfonates at Highly Oriented Pyrolytic Graphite. ChemElectroChem, 6, 2019, 5651-5660.
  21. X. Liu, M.M. Sartin, Y. Liu,Z-Q Tian, D. Zhan. Optimizing the interfacial electron transfer capability of single layer graphene by thermal annealing. Chem. Commun., 2020, 56, 253-265.
  22.  Isidoro López, Nicolas Le Poul. Theoretical aspects of electrochemistry at low temperature. Journal of Electroanalytical Chemistry Volume 887, 15 April 2021, 115160.(

  23.  Viacheslav Shkirskiy, Julien Billon, Eric Levillain, Christelle Gautier. From monolayer to multilayer: perylenediimide diazonium derivative acting either as a growth inhibitor or a growth enhancer. Langmuir 2021, 37, 44, 12834–12841.(

  24.  Claire Fave, Bernd Schöllhorn. Chapter 9, Halogen bonding in electrochemistry in book : Halogen Bonding in Solution.
    09 January 2021 ( Wiley Online Library.


  1. Klymenko, O.V.; Svir, I.; Amatore, C. A new approach for the simulation of electrochemiluminescence (ECL). ChemPhysChem 14, 2013, 2237-2250.
  2. Svir, I.; Oleinick, A.; Klymenko, O.V.; Amatore, C. Strong and unexpected effects of diffusion rates on electrochemiluminescence (ECL) generation by amine/transition metal(II) systems. ChemElectroChem 2(6), 2015, 811-818.
  3. Liu, Z.; Qi, W.; Xu, G. Recent advances in electrochemiluminescence,  Soc. Rev. 44(10), 2015, 3117.
  4. Oleinick, A.; Klymenko, O.V.; Svir, I.; Amatore, C. Theoretical Insights in ECL. Chap. 7 in book “Luminescence in Electrochemistry: Applications in Analytical Chemistry, Physics and Biology”, Springer Int. Pub., 2017, p. 215-256.
  5. Daviddi, E.; Oleinick, A.; Svir, I.; Valenti, G.; Paolucci, F.; Amatore, C. Theory and simulation for optimizing electrogenerated chemiluminescence from tris(2,2′-bipyridine)-ruthenium(II)-doped silica nanoparticles and tripropylamine. ChemElectroChem 4, 2017, 1719-1730.
  6. I. Svir, A. Oleinick, O.V. Klymenko, C. Amatore. Theoretical concepts underlying ECL generation. Chapter 5.  Book: “Analytical Electrogenerated  Chemiluminescence: from Fundamentals  to Bioassay”, Editor: Neso Sojic.  Royal Society Chemistry (UK) , 2020, pp. 134-158.
  7. E.C. Rivera, J.J. Swerdlow, R.L. Summerscales, P.P.T. Uppala, R.M. Filho, M.R.C. Neto, H.J. Kwon. Data-Driven Modeling of Smartphone-Based Electrochemiluminescence Sensor Data Using Artificial Intelligence. Sensors 2020, 20, 625.
  8. A.F. Alba, Luis, J. Totoricaguena-Gorriño, L. Ruiz-Rubio, J.S.J. LuisVilas-Vilela, S.Lanceros-Méndez, F. J. del Campo.  Understanding electrogenerated chemiluminescence at graphite screen-printed electrodes.  Journal of Electroanalytical Chemistry. V. 914, 1 June 2022, 116331